3.

Problem 11.44P (HRW)

A pulsar is a rapidly rotating neutron star that emits radio pulses with precise synchronisation, one such pulse for each rotation of the star. The period T of rotation is found by measuring the time between pulses. At present, the pulsar in the central region of the Crab nebula has a period of rotation of $T=0.033 \mathrm{~s}$, and this period is observed to be increasing at the rate of $1.26 \times 10^{-5} \mathrm{~s} / \mathrm{y}$.
(a) What is the value of the angular acceleration in $\mathrm{rad} / \mathrm{s}^{2}$?
(b) If its angular acceleration is constant, how many years from now will the pulsar stop rotating?
(c) The pulsar originated in a supernova explosion seen in the year A.D. 1054. What was T for the pulsar when it was born? (Assume constant angular acceleration since then.)

Solution:

(a)

Angular speed ω and period T are related as $\omega=\frac{2 \pi}{T}$.

Therefore,
$\frac{d \omega}{d t}=-\frac{2 \pi}{T^{2}} \frac{d T}{d t}$.

We have been given that for the pulsar
$\frac{d T}{d t}=1.26 \times 10^{-5} \mathrm{~s} / \mathrm{y}=\frac{1.26 \times 10^{-5}}{3.156 \times 10^{7}}=3.99 \times 10^{-13}$.
Therefore, the angular acceleration of the pulsar is
$\alpha=\frac{d \omega}{d t}=-\frac{2 \pi}{0.033^{2}} \times 3.99 \times 10^{-13} \mathrm{rad} / \mathrm{s}^{2}=-2.30 \times 10^{-9} \mathrm{rad} / \mathrm{s}^{2}$.
(b)

The present angular speed of the pulsar is
$\omega=\frac{2 \pi}{0.033} \mathrm{rad} \mathrm{s}^{-1}=1.90 \times 10^{2} \mathrm{rad} \mathrm{s}^{-1}$.

If the pulsar will continue to decelerate at this rate, it will stop rotating at time t_{f},
$t_{f}=\frac{\omega}{\alpha}=\frac{1.90 \times 10^{2}}{2.30 \times 10^{-9}} \mathrm{~s}=8.27 \times 10^{10} \mathrm{~s}$,
or
$t_{f}=\frac{8.27 \times 10^{10}}{3.156 \times 10^{7}} \mathrm{y}=2621 \mathrm{y}$.
(c)

As the pulsar was formed in 1054 A.D. its life till the present has been 949 y . Its period of rotation at the time of its birth

$$
T_{i}=\left(0.033-1.26 \times 10^{-5} \times 949\right) \mathrm{s}=0.021 \mathrm{~s}
$$

