2.

Problem 11.41P (HRW)

A wheel A of radius $r_{a}=10.0 \mathrm{~cm}$ is coupled by belt B to wheel C of radius $r_{c}=25.0 \mathrm{~cm}$. Wheel A increases its angular speed from rest at a uniform rate of 1.6 $\mathrm{rad} / \mathrm{s}^{2}$. We have to find the time for wheel C to reach a rotational speed of $100 \mathrm{rev} / \mathrm{min}$, assuming that belt does not slip.

Solution:

Let at time t the angular speed of wheel A be ω_{a} and the angular speed of wheel C be ω_{c}. As the two wheels are connected by a belt which does not slip, the linear speeds at the rims of the two wheels has to be equal. This requirement gives the condition

$$
r_{a} \omega_{a}=r_{c} \omega_{c} .
$$

Also, the angular acceleration α_{a} of wheel A and the angular acceleration α_{c} of wheel C will be similarly related, that is
$r_{a} \alpha_{a}=r_{c} \alpha_{c}$.
We are given that $r_{a}=10.0 \mathrm{~cm}, r_{c}=25.0 \mathrm{~cm}$, and $\alpha_{a}=1.6 \mathrm{rad} / \mathrm{s}^{2}$.

Therefore,
$\alpha_{c}=\frac{1.6 \times 10}{25} \mathrm{rad} \mathrm{s}^{-2}=0.64 \mathrm{rad} \mathrm{s}^{-2}$.
We will now calculate the time in which the wheel C will acquire the angular speed
$\omega_{c}=\frac{100 \times 2 \pi}{60} \mathrm{rad} \mathrm{s}^{-1}=10.47 \mathrm{rad} \mathrm{s}^{-1}$.
As the wheel C is speeding up with constant acceleration the time in which it will attain this angular speed will be $t=\frac{\omega_{c}}{\alpha_{c}}=\frac{10.47}{0.64} \mathrm{~s}=16.4 \mathrm{~s}$.

